Principles of Mathematical Analysis, Rudin, 3th ed, Chapter 3, Problem 5

Problem

For any two real sequences $\{a_n\}$, $\{b_n\}$, prove that

$$ \limsup_{n \rightarrow \infty} (a_n + b_n) \leq \limsup_{n \rightarrow \infty} a_n + \limsup_{n \rightarrow \infty} b_n $$

Answer

Note that there exists $n_k$ such that $a_{n_k} + b_{n_k} \rightarrow \limsup_{n \rightarrow \infty} (a_n + b_n)$.

$\limsup_{n \rightarrow \infty} (a_n + b_n) = \lim_{k \rightarrow \infty} (a_{n_k} + b_{n_k}) \leq \lim_{k \rightarrow \infty} (\sup_{m \geq k}a_{n_m} + \sup_{m \geq k}b_{n_m}) = \lim_{k \rightarrow \infty}\sup_{m \geq k}a_{n_m} + \lim_{k \rightarrow \infty}\sup_{m \geq k}b_{n_m} = \limsup_{n \rightarrow \infty} a_n + \limsup_{n \rightarrow \infty} b_n$.

Comments

Popular posts from this blog

Principles of Mathematical Analysis, Rudin, 3th ed, Chapter 5, Problem 15

Principles of Mathematical Analysis, Rudin, 3th ed, Chapter 2, Problem 14

Principles of Mathematical Analysis, Rudin, 3th ed, Chapter 5, Problem 3