Elementary Classical Analysis, Marsden, 2nd ed, Chapter 2, Problem 1

Problem

Discuss whether the following sets are open or closed:

(a) (1,2) in $\mathbb{R}$

(b) [2,3] in $\mathbb{R}$

(c) $\bigcap_{n=1}^\infty [-1,1/n)$ in $\mathbb{R}$

(d) $\mathbb{R}^n$ in $\mathbb{R}^n$

(e) A hyperplane in $\mathbb{R}^n$

(f) $\{r \in (0,1) \;|\; \text{$r$ is rational} \}$ in $\mathbb{R}$

(g) $\{(x,y) \in \mathbb{R}^2 \;|\; 0<x \leq 1\}$ in $\mathbb{R}^2$

(h) $\{x \in \mathbb{R}^n \;|\; \|x\|=1\}$ in $\mathbb{R}^n$.

Answer

(a) Open: For $x \in (1,2)$, we can choose $\epsilon = \min(x-1,2-x)$ so that $D(x,\epsilon) \subset (1,2)$.

(b) Closed: For $x \in [2,3]^c$, we can choose $\epsilon = \min(2-x,x-3)$ so that $D(x,\epsilon) \subset [2,3]^c$.

(c) Closed: We first prove that $[-1,0] = A:=\bigcap_{n=1}^\infty [-1,1/n)$. Since $[-1,0] \subset [-1,1/n)$ for all $n \in \mathbb{N}$, $[-1,0] \subset A$.

To prove $A \subset [-1,0]$, we assume that $x \in A$. Then obviously, $x \geq -1$. If $x > 0$, then there exists $n \in \mathbb{N}$ such that $x > 1/n$, which means $x \notin [-1,1/n)$. Hence, $x \leq 0$ and this implies $x \in [-1,0]$.

We can prove that $[-1,0]$ is closed set as in (b).

(d) Open and closed: For all $x \in \mathbb{R}^n$, $D(x,1) \subset \mathbb{R}^n$, obviously, which means $\mathbb{R}^n$ is an open set. Furthermore, $(\mathbb{R}^n)^c$ is a empty set, which is a trivial open set.

(e) Closed: Let $H \subset \mathbb{R}^n$ be a hyperplane. For $x \in H^c$, there is a distance $d$ between $x$ and $H$. Then $D(x,d/2) \subset H^c$.

(f) Neither open nor closed: For $1/2 \in A:=\{r \in (0,1) \;|\; \text{$r$ is rational} \}$ and $\epsilon >0$, $D(1/2,\epsilon)$ contains some irrational numbers in $(0,1)$ since $D(1/2,\epsilon)$ is uncountable.

Conversely, for $\sqrt{2}/2 \in A^c$ and $\epsilon > 0$, $D(\sqrt{2}/2,\epsilon)$ contains some rational number in $A$ since rational number is dense in $\mathbb{R}$

(g) Neither open nor closed: For $(1,0) \in A:=\{(x,y) \in \mathbb{R}^2 \;|\; 0<x \leq 1\}$ and $\epsilon>0$, $D((1,0) ,\epsilon)$ contains $(1+\epsilon/2,0) \in A^c$.

Conversely, For $(0,0) \in A^c$ and $\epsilon >0$, $D((0,0),\epsilon)$ contains $(\epsilon/2,0) \in A$.

(h) Closed: Define $A:=\{x \in \mathbb{R}^n \;|\; \|x\|=1\}$. For $y \in A^c$, we can choose $\epsilon=|1-\|y\||/2$ so that $D(y,\epsilon) \subset A^c$.

Comments

Popular posts from this blog

Principles of Mathematical Analysis, Rudin, 3th ed, Chapter 5, Problem 15

Principles of Mathematical Analysis, Rudin, 3th ed, Chapter 2, Problem 14

Principles of Mathematical Analysis, Rudin, 3th ed, Chapter 5, Problem 3