Principles of Mathematical Analysis, Rudin, 3th ed, Chapter 1, Problem 16

Problem

Suppose $k \geq 3,\mathbf{x},\mathbf{y} \in \mathbb{R}^k, |\mathbf{x} - \mathbf{y}|=d>0$, and $r>0$. Prove:

(a) If $2r > d$, there are infinitely many $\mathbf{z} \in \mathbb{R}^k$ such that

$$ |\mathbf{z} - \mathbf{x}| = |\mathbf{z} - \mathbf{y}| = r.$$

(b) If $2r = d$, there is exactly one such $\mathbf{z}$.

(c) If $2r < d$, there is no such $\mathbf{z}$.

Answer

(a) Consider $\mathbf{w} \in \mathbb{R}^k$ such that $|\mathbf{w}|^2=r^2-d^2/4$ and $\mathbf{w} \cdot (\mathbf{x} - \mathbf{y}) = 0$. Then, the components of $\mathbf{w}=(w_1,\cdots,w_k)$ satisfy the following equations.

$$w_1(x_1 - y_1) + \cdots + w_k(x_k - y_k) = 0,$$

$$w_1^2 + \cdots + w_k^2 = r^2 - d^2/4.$$

For $k \geq 3$ and $2r > d$, there are infinitely many $w_1,\cdots,w_k$ satisfying the above. For every $\mathbf{w}$ satisfying the above, $\mathbf{z} = \frac{\mathbf{x} + \mathbf{y}}{2} + \mathbf{w}$ satisfies

$$ |\mathbf{z} - \mathbf{x}| = |\mathbf{z} - \mathbf{y}| = r.$$

Hence, there there are infinitely many such $\mathbf{z}$.

(b) Since $ |\mathbf{z} - \mathbf{x}| = |\mathbf{z} - \mathbf{y}| = d/2$, the equality holds in the triangle inequality

$$ |\mathbf{z} - \mathbf{x}| + |\mathbf{z} - \mathbf{y}| \geq |\mathbf{x} - \mathbf{y}|, $$

which implies

$$ \mathbf{x} - \mathbf{y} = \alpha (\mathbf{z} - \mathbf{x}) = \beta (\mathbf{z} - \mathbf{y}). $$

In addition, we have $|\alpha|=|\beta|=1/2$. If $\alpha=\beta$, then we have $\mathbf{x}=\mathbf{y}$, which is contradiction; hence, $\alpha=-\beta$. We can conclude that $\mathbf{z}=(\mathbf{x} + \mathbf{y})/2$ is the only solution.

(c) If $2r < d$, the following triangle inequality cannot be satisfied.

$$ |\mathbf{z} - \mathbf{x}| + |\mathbf{z} - \mathbf{y}| \geq |\mathbf{x} - \mathbf{y}| $$

Hence, there is no such $\mathbf{z}$.

Comments

Popular posts from this blog

Principles of Mathematical Analysis, Rudin, 3th ed, Chapter 5, Problem 15

Principles of Mathematical Analysis, Rudin, 3th ed, Chapter 2, Problem 14

Principles of Mathematical Analysis, Rudin, 3th ed, Chapter 5, Problem 3