Show that $(0,1)$ and $(0,1]$ have the same cardinality.

Answer

Define a function $f:(0,1) \rightarrow (0,1]$ as

$$f(x) = \begin{cases} 2x, & \text{$x = 1/2^n$ for $n=1,2,\cdots$} \\ x, & \text{otherwise} \end{cases}$$

(1) Injective: suppose $f(x_1) = f(x_2)$. If $f(x_1)=f(x_2)=1/2^n$ for some $n \in \{0,1,2,\cdots\}$, then $x_1=1/2^{n+1}=x_2$. Otherwise, $x_1=f(x_1)=f(x_2)=x_2$.

(2) Surjective: suppose $y \in (0,1]$. If $y = 1/2^n$ for some $n \in \{0,1,2,\cdots\}$, then $y = f(1/2^{n+1})$. Otherwise, $y = f(y)$.


Comments

Popular posts from this blog

Principles of Mathematical Analysis, Rudin, 3th ed, Chapter 5, Problem 15

Principles of Mathematical Analysis, Rudin, 3th ed, Chapter 2, Problem 14

Principles of Mathematical Analysis, Rudin, 3th ed, Chapter 5, Problem 3