Principles of Mathematical Analysis, Rudin, 3th ed, Chapter 1, Problem 3

Problem

Prove Proposition 1.15.

The axioms for multiplication imply the following statements.

(a) If $x \neq 0$ and $xy = xz$ then $y = z$.

(b) If $x \neq 0$ and $xy = x$ then $y = 1$.

(c) If $x \neq 0$ and $xy = 1$ then $y = 1/x$.

(d) If $x \neq 0$ then $1/(1/x) = x$.


Answer

(a) $xy = xz$   $\overset{(M5)}{\Longrightarrow}$   $(1/x)(xy) = (1/x)(xz)$   $\overset{(M3)}{\Longrightarrow}$   $((1/x)x)y = ((1/x)x)z$   $\overset{(M2)}{\Longrightarrow}$   $(x(1/x))y = (x(1/x))z$   $\overset{(M5)}{\Longrightarrow}$   $1y = 1z$   $\overset{(M4)}{\Longrightarrow}$   $y = z$.

(b) $xy = x$   $\overset{(M4)}{\Longrightarrow}$   $xy = 1x$   $\overset{(M2)}{\Longrightarrow}$   $xy = x1$   $\overset{(a)}{\Longrightarrow}$   $y = 1$.

(c) $xy = 1$   $\overset{(M5)}{\Longrightarrow}$   $xy = x(1/x)$   $\overset{(a)}{\Longrightarrow}$   $y=1/x$.

(d) $x(1/x)=1$   $\overset{(M2)}{\Longrightarrow}$   $(1/x)x=1$   $\overset{(c)}{\Longrightarrow}$   $x = 1/(1/x)$. In fact, we need a condition $1/x \neq 0$ to use (c), but it is not guaranteed. To prove $1/x \neq 0$, the distributive law is necessary. Hence, (d) cannot be derived only by the axioms for multiplication.

Comments

Popular posts from this blog

Elementary Classical Analysis, Marsden, 2nd ed, Chapter 2, Problem 1

Principles of Mathematical Analysis, Rudin, 3th ed, Chapter 5, Problem 15