Elementary Classical Analysis, Marsden, 2nd ed, Introduction, Problem 3

Problem

Let $f:A \rightarrow B$ be a function, $C_1,C_2 \subset B$, and $D_1,D_2 \subset A$. Prove

(a) $f^{-1}(C_1 \cup C_2) = f^{-1}(C_2) \cup f^{-1}(C_2)$

(b) $f(D_1 \cup D_2) = f(D_1) \cup f(D_2)$

(c) $f^{-1}(C_1 \cap C_2) = f^{-1}(C_1) \cap f^{-1}(C_2)$

(d) $f(D_1 \cap D_2) \subset f(D_1) \cap f(D_2)$


Answer

(a) $x \in f^{-1}(C_1 \cup C_2)$  $\Leftrightarrow$  there exists $y \in C_1 \cup C_2$ such that $y = f(x)$  $\Leftrightarrow$  there exists $y_1 \in C_1$ such that $y_1 = f(x)$ or there exists $y_2 \in C_2$ such that $y_2 = f(x)$  $\Leftrightarrow$  $x \in f^{-1}(C_1)$ or $x \in f^{-1}(C_2)$  $\Leftrightarrow$  $x \in f^{-1}(C_1) \cup f^{-1}(C_2)$

(b) $y \in f(D_1 \cup D_2)$  $\Leftrightarrow$  $y=f(x)$ for some $x \in D_1 \cup D_2$  $\Leftrightarrow$  $y=f(x_1)$ for some $x_1 \in D_1$ or $y=f(x_2)$ for some $x_2 \in D_2$  $\Leftrightarrow$  $y \in f(D_1)$ or $y \in f(D_2)$  $\Leftrightarrow$  $y \in f(D_1) \cup f(D_2)$

(c) $x \in f^{-1}(C_1 \cap C_2)$  $\Rightarrow$  there exists $y \in C_1 \cap C_2$ such that $y = f(x)$  $\Rightarrow$  $x \in f^{-1}(C_1)$ and $x \in f^{-1}(C_2)$  $\Rightarrow$  $x \in f^{-1}(C_1) \cap f^{-1}(C_2)$

$x \in f^{-1}(C_1) \cap f^{-1}(C_2)$  $\Rightarrow$  $x \in f^{-1}(C_1)$ and $x \in f^{-1}(C_2)$  $\Rightarrow$  there exists $y_1 \in C_1$ and $y_2 \in C_2$ such that $y_1 = f(x) = y_2$  $\Rightarrow$  there exists $y \in C_1 \cap C_2$ such that $y = f(x)$  $\Rightarrow$  $x \in f^{-1}(C_1 \cap C_2)$

(d) $y \in f(D_1 \cap D_2)$  $\Rightarrow$  $y=f(x)$ for $x \in D_1 \cap D_2$  $\Rightarrow$  $y \in f(D_1)$ and $y \in f(D_2)$  $\Rightarrow$  $y \in f(D_1) \cap f(D_2)$

Comments

Popular posts from this blog

Principles of Mathematical Analysis, Rudin, 3th ed, Chapter 5, Problem 15

Principles of Mathematical Analysis, Rudin, 3th ed, Chapter 2, Problem 14

Principles of Mathematical Analysis, Rudin, 3th ed, Chapter 5, Problem 3