Principles of Mathematical Analysis, Rudin, 3th ed, Chapter 4, Problem 23

Problem

A real-valued function f defined in (a,b) is said to be convex if

f(\lambda x + (1-\lambda)y) \leq \lambda f(x) + (1-\lambda) f(y)

whenever a<x<b,a<y<b,0<\lambda<1. Prove that every convex function is continuous. Prove that every increasing convex function of a convex function is convex. (For example, if f is convex, so is e^f.)

If f is convex in (a,b) and if a<s<t<u<b, show that

\frac{f(t) - f(s)}{t-s} \leq \frac{f(u) - f(s)}{u-s} \leq \frac{f(u) - f(t)}{u-t}.

Answer

(1) Let f be a convex function in (a,b) and a<s<t<u<b. Then note that

t = \frac{t-s}{u-s}u + (1-\frac{t-s}{u-s})s.

Then

f(t) \leq \frac{t-s}{u-s}f(u) + (1-\frac{t-s}{u-s})f(s).

From the above inequality, we can deduce the following two inequalities.

\frac{f(t) - f(s)}{t-s} \leq \frac{f(u) - f(s)}{u-s},

\frac{f(u) - f(s)}{u-s} \leq \frac{f(u) - f(t)}{u-t}.

(2) Fix x \in (a,b) and \epsilon >0. For y \in (a,b), choose a_0,a_1,b_0,b_1 \in (a,b) satisfying a_0<a_1<x<b_0<b_1 and a_0<a_1<y<b_0<b_1. If x>y, we have

\frac{f(a_1) - f(a_0)}{a_1 - a_0} \leq \frac{f(x) - f(y)}{x-y} \leq \frac{f(b_1) - f(b_0)}{b_1-b_0},

and if x<y, we have

\frac{f(a_1) - f(a_0)}{a_1 - a_0} \leq \frac{f(y) - f(x)}{y-x} \leq \frac{f(b_1) - f(b_0)}{b_1-b_0},

Then

\frac{|f(x) - f(y)|}{|x-y|} \leq \max(\frac{|f(a_1) - f(a_0)|}{|a_1 - a_0|},\frac{|f(b_1) - f(b_0)|}{|b_1 - b_0|}).

Choose \delta = \epsilon\min(1, \frac{|a_1-a_0|}{|f(a_1)-f(a_0)|},  \frac{|b_1-b_0|}{|f(b_1)-f(b_0)|}). Then we have |f(x) - f(y)| < \epsilon for y \in (a,b) satisfying |x-y|<\delta.

(3) Let f be a convex function and g be a convex increasing function on (a,b). We will show that h = g \circ f is also a convex function. For x,y \in (a,b) and \lambda \in (0,1),

h(\lambda x + (1-\lambda)y)  = g(f(\lambda x + (1-\lambda)y)) \leq g(\lambda f(x) + (1-\lambda)f(y)) \leq \lambda g(f(x)) + (1-\lambda)g(f(y)) = \lambda h(x) + (1-\lambda)h(y).

 


Comments

Popular posts from this blog

Principles of Mathematical Analysis, Rudin, 3th ed, Chapter 2, Problem 14

Principles of Mathematical Analysis, Rudin, 3th ed, Chapter 5, Problem 15

Principles of Mathematical Analysis, Rudin, 3th ed, Chapter 4, Problem 4