Elementary Classical Analysis, Marsden, 2nd ed, Chapter 4, Problem 21

Problem

Which of the following functions on $\mathbb{R}$ are uniformly continuous?

(a) $f(x)=\frac{1}{(x^2 + 1)}$,

(b) $f(x)=\cos^3x$,

(c) $f(x)=\frac{x^2}{(x^2+2)}$,

(d) $f(x)=x \sin x$.

Answer

(a) For $\epsilon > 0$, choose $\delta = \epsilon$. Then for $|x-a|<\delta$, $|f(x)-f(a)| = |\frac{1}{x^2+1}-\frac{1}{a^2+1}| = |\frac{a^2 - x^2}{(x^2+1)(a^2+1)}| = |x-a||\frac{a+x}{(x^2+1)(a^2+1)}| \leq |x-a||\frac{a}{a^2+1} + \frac{x}{x^2+1}| < \delta = \epsilon$.

(b) For $\epsilon > 0$, choose $\delta = \frac{1}{3}\epsilon$. Then for $|x-a|<\delta$, $|f(x)-f(a)| = |\cos^3x - \cos^3a| = |\cos x - \cos a||\cos^2x + \cos x \cos a + \cos^2 a| \leq |-2\sin(\frac{x+a}{2})\sin(\frac{x-a}{2})|\cdot 3 \leq 6 |\sin\frac{x-a}{2}| \leq 3|x-a| \leq 3\delta = \epsilon$.

(c) For $\epsilon > 0$, choose $\delta = \frac{\epsilon}{\sqrt{2}}$. Then for $|x-a|<\delta$, $|f(x) - g(x)| = |(1-\frac{2}{x^2+2}) - (1 - \frac{2}{a^2+2})| = |\frac{2}{x^2+2} - \frac{2}{a^2 + 2}| = |\frac{2(a^2 - x^2)}{(x^2+2)(a^2 + 2)}| = |x-a||\frac{2(a+x)}{(x^2+2)(a^2+2)}| \leq 2|x-a||\frac{x}{x^2+2} + \frac{a}{a^2 + 2}|\leq \sqrt{2} \delta = \epsilon$.

(d) We will prove that $f(x)$ is not uniformly continuous by contradiction. Let $\epsilon = 1$. For any $\delta >0$, choose $n > \frac{1}{\pi}\sin\delta/2,x=n\pi + \delta/2,a=n\pi$. Then $|x-a|=\delta/2<\delta$, but $|f(x)-f(a)|=|x\sin x - a\sin a|=|(n \pi + \delta/2)\sin\delta/2| \geq n\pi\sin\delta/2 > 1=\epsilon$.

Comments

Popular posts from this blog

Principles of Mathematical Analysis, Rudin, 3th ed, Chapter 5, Problem 15

Principles of Mathematical Analysis, Rudin, 3th ed, Chapter 2, Problem 14

Elementary Classical Analysis, Marsden, 2nd ed, Chapter 4, Problem 28