Elementary Classical Analysis, Marsden, 2nd ed, Chapter 4, Problem 21
Problem
Which of the following functions on $\mathbb{R}$ are uniformly continuous?
(a) $f(x)=\frac{1}{(x^2 + 1)}$,
(b) $f(x)=\cos^3x$,
(c) $f(x)=\frac{x^2}{(x^2+2)}$,
(d) $f(x)=x \sin x$.
Answer
(a) For $\epsilon > 0$, choose $\delta = \epsilon$. Then for $|x-a|<\delta$, $|f(x)-f(a)| = |\frac{1}{x^2+1}-\frac{1}{a^2+1}| = |\frac{a^2 - x^2}{(x^2+1)(a^2+1)}| = |x-a||\frac{a+x}{(x^2+1)(a^2+1)}| \leq |x-a||\frac{a}{a^2+1} + \frac{x}{x^2+1}| < \delta = \epsilon$.
(b) For $\epsilon > 0$, choose $\delta = \frac{1}{3}\epsilon$. Then for $|x-a|<\delta$, $|f(x)-f(a)| = |\cos^3x - \cos^3a| = |\cos x - \cos a||\cos^2x + \cos x \cos a + \cos^2 a| \leq |-2\sin(\frac{x+a}{2})\sin(\frac{x-a}{2})|\cdot 3 \leq 6 |\sin\frac{x-a}{2}| \leq 3|x-a| \leq 3\delta = \epsilon$.
(c) For $\epsilon > 0$, choose $\delta = \frac{\epsilon}{\sqrt{2}}$. Then for $|x-a|<\delta$, $|f(x) - g(x)| = |(1-\frac{2}{x^2+2}) - (1 - \frac{2}{a^2+2})| = |\frac{2}{x^2+2} - \frac{2}{a^2 + 2}| = |\frac{2(a^2 - x^2)}{(x^2+2)(a^2 + 2)}| = |x-a||\frac{2(a+x)}{(x^2+2)(a^2+2)}| \leq 2|x-a||\frac{x}{x^2+2} + \frac{a}{a^2 + 2}|\leq \sqrt{2} \delta = \epsilon$.
(d) We will prove that $f(x)$ is not uniformly continuous by contradiction. Let $\epsilon = 1$. For any $\delta >0$, choose $n > \frac{1}{\pi}\sin\delta/2,x=n\pi + \delta/2,a=n\pi$. Then $|x-a|=\delta/2<\delta$, but $|f(x)-f(a)|=|x\sin x - a\sin a|=|(n \pi + \delta/2)\sin\delta/2| \geq n\pi\sin\delta/2 > 1=\epsilon$.
Comments
Post a Comment