Principles of Mathematical Analysis, Rudin, 3th ed, Chapter 2, Problem 29

Problem

Prove that every open set in $\mathbb{R}^1$ is the union of an at most countable collection of disjoint segments.

Answer

Let $K_l:=\{[m,m+1/2^l)\;|\; m \in \mathbb{Z}/2^l\}$. Then $K_l$ is a collection of coutable disjoint segments with length $1/2^l$. For open set $G \subset \mathbb{R}^1$, define

$$S_0:=\{Q \in K_0\;|\; Q \subset G\}.$$

$$S_n:=\{Q \in K_n\;|\; Q \subset G, \text{$Q \not\subset Q'$ for some $Q' \in \bigcup_{i=1}^{n-1}K_i$}  \}.$$

$$S:=\bigcup_{n=1}^\infty S_n.$$

Then $S$ is at most countable collection of disjoint segments and $\bigcup_{Q \in S}Q \subset G$.

For $x \in G$, there exists $N \in \mathbb{N}$ such that $N_{1/2^N}(x) \subset G$. Then, we can find $m \in \mathbb{Z}/2^N$ such that $m \leq x$ and $m \in N_{1/2^N}(x)$. This means $x \in Q$ for some $Q \in \bigcup_{n=1}^N S_n$. Hence $G \subset \bigcup_{Q \in S}Q$.

Comments

Popular posts from this blog

Principles of Mathematical Analysis, Rudin, 3th ed, Chapter 5, Problem 15

Principles of Mathematical Analysis, Rudin, 3th ed, Chapter 2, Problem 14

Elementary Classical Analysis, Marsden, 2nd ed, Chapter 4, Problem 28