Principles of Mathematical Analysis, Rudin, 3th ed, Chapter 2, Problem 7

Problem

Let $A_1,A_2,A_3,\cdots$ be subsets of a metric space.

(a) If $B_n=\bigcup_{i=1}^n A_i$, prove that $\overline{B_n} = \bigcup_{i=1}^n \overline{A_i}$, for $n=1,2,3,\cdots$.

(b) If $B=\bigcup_{i=1}^\infty A_i$, prove that $\overline{B} \supset \bigcup_{i=1}^\infty \overline{A_i}$.

Answer

(a)

($\subset$) Let $x \in \overline{B_n} = B_n \cup (B_n)'$. If $x \in B_n$ then $x \in \bigcup_{i=1}^n A_i \subset \bigcup_{i=1}^n \overline{A_i}$. If $x \in (B_n)'$, to prove by contradiction, suppose $x \notin \overline{A_i}$ for all $i=1,\cdots,n$. Then there exists $\epsilon_i >0$ such that $N_{\epsilon_i}(x) \cap A_i = \emptyset$. For $\epsilon=\min(\epsilon_1,\cdots,\epsilon_n)$, $N_{\epsilon}(x) \cap B_n = \emptyset$, which is contradiction.

($\supset$) Let $x \in \overline{A_i}$ for some $i=1,\cdots,n$. If $x \in A_i$ then $x \in B_n$. If $x \in (A_i)'$ then for $\epsilon >0$, there exists $y \in A_i$ such that $y \in N_\epsilon(x)$ and $y \neq x$. Since $y$ is also contained in $B_n$, $x \in (B_n)'$.

(b) Let $x \in \overline{A_i}$ for some $i=1,2,\cdots$. If $x \in A_i$ then $x \in B_n$. If $x \in (A_i)'$ then for $\epsilon >0$, there exists $y \in A_i$ such that $y \in N_\epsilon(x)$ and $y \neq x$. Since $y$ is also contained in $B_n$, $x \in (B_n)'$.

Comments

Popular posts from this blog

Principles of Mathematical Analysis, Rudin, 3th ed, Chapter 5, Problem 15

Principles of Mathematical Analysis, Rudin, 3th ed, Chapter 2, Problem 14

Elementary Classical Analysis, Marsden, 2nd ed, Chapter 4, Problem 28