Elementary Classical Analysis, Marsden, 2nd ed, Chapter 1, Problem 28

Problem

Let $x_n$ be a Cauchy sequence in $\mathbb{R}$ and let $A_n=\sup\{x_n,x_{n+1},\cdots\}$ and $B_n=\inf\{x_n,x_{n+1},\cdots\}$. Prove $A_n$ converges to the same limit as $B_n$, which in turn is the same as the limit of $x_n$.

Answer

Since $\mathbb{R}$ is complete, $x_n \rightarrow x \in \mathbb{R}$. 

For $\epsilon>0$, there exists $N$ such that $|x_n - x|< \epsilon$ for all $n \geq N$. Since $A_n=\sup\{x_n,x_{n+1},\cdots\}$, $A_n \geq x_n >x - \epsilon$ for all $n \geq N$. On the other hand, note that $x_n < x+\epsilon$ for all $n \geq N$ $\Rightarrow$  $A_n \leq x + \epsilon$ for all $n \geq N$  $\Rightarrow$  $|A_n - x| \leq \epsilon$ for all $n \geq N$. This means $A_n \rightarrow x$.

Since $B_n=\inf\{x_n,x_{n+1},\cdots\}$, $B_n \leq x_n < x + \epsilon$ for all $n \geq N$. On the other hand, note that $x_n > x-\epsilon$ for all $n \geq N$ $\Rightarrow$  $B_n \leq x - \epsilon$ for all $n \geq N$  $\Rightarrow$  $|B_n - x| \leq \epsilon$ for all $n \geq N$. This means $B_n \rightarrow x$.



Comments

Popular posts from this blog

Principles of Mathematical Analysis, Rudin, 3th ed, Chapter 5, Problem 15

Principles of Mathematical Analysis, Rudin, 3th ed, Chapter 2, Problem 14

Elementary Classical Analysis, Marsden, 2nd ed, Chapter 4, Problem 28