Elementary Classical Analysis, Marsden, 2nd ed, Chapter 2, Problem 12

Problem

Prove the following properties (for subset of $\mathbb{R}^n$).

(a) $\text{int}(\text{int}(A)) = \text{int}(A)$.

(b) $\text{int}(A \cup B) \supset \text{int}(A) \cup \text{int}(B)$

(c) $\text{int}(A \cap B) = \text{int}(A) \cap \text{int}(B)$.

Answer

(a) For $x \in \text{int}(\text{int}(A))$, there exists $\epsilon >0$ such that $D(x,\epsilon) \subset \text{int}(A)$, which means $x \in \text{int}(A)$.

For $x \in \text{int}(A)$, there exists $\epsilon >0$ such that $D(x,\epsilon) \subset A$. For $y \in D(x,\epsilon)$, $D(y,\epsilon-|x-y|) \subset D(x,\epsilon) \subset A$, which implies $D(x,\epsilon) \subset \text{int}(A)$. Hence, $x \in \text{int}(\text{int}(A))$.

(b) For $x \in \text{int}(A)$, there exists $\epsilon >0$ such that $D(x,\epsilon) \subset A \subset A \cup B$  $\Rightarrow$  $x \in \text{int}(A \cup B)$  $\Rightarrow$  $\text{int}(A) \subset \text{int}(A \cup B)$. Similarly, $\text{int}(B) \subset \text{int}(A \cup B)$.

(c) For $x \in \text{int}(A \cap B)$, there exists $\epsilon >0$ such that $D(x,\epsilon) \subset A \cap B \subset A$, which implies $x \in \text{int}(A)$. Similarly, $x \in \text{int}(B)$. Hence, $\text{int}(A \cap B) \subset \text{int}(A) \cap \text{int}(B)$.

For $x \in \text{int}(A) \cap \text{int}(B)$, there exists $\epsilon_A,\epsilon_B >0$ such that $D(x,\epsilon_A) \subset A$ and $D(x,\epsilon_B) \subset B$. For $\epsilon = \min(\epsilon_A,\epsilon_B)$, $D(x,\epsilon) \subset A \cap B$, which implies $x \in \text{int}(A \cap B)$. Hence, $\text{int}(A) \cap \text{int}(B) \subset \text{int}(A \cap B)$.

Comments

Popular posts from this blog

Principles of Mathematical Analysis, Rudin, 3th ed, Chapter 5, Problem 15

Principles of Mathematical Analysis, Rudin, 3th ed, Chapter 2, Problem 14

Elementary Classical Analysis, Marsden, 2nd ed, Chapter 4, Problem 28